S

NEAR Liquid Token

Audit

Presented by:

OtterSec
Adrian Self
William Wang

Contents

01 Executive Summary 2
OVEIVIEW . . . o ot e e e e e e e e 2
Key FIndings o o e e e e e e 2

02 Scope 3

03 Findings 4

04 General Findings 5
OS-NLT-SUG-00 | Internal Functions Marked Private 6
OS-NLT-SUG-01 | Contract Source Metadata 7
OS-NLT-SUG-02 | Redundant Helper Function 8
OS-NLT-SUG-03 | Rounding Direction in Stake/Unstake 9

Appendices

A Program Files 10
B Procedure 11
C Implementation Security Checklist 12
D Vulnerability Rating Scale 13

© 2022 OtterSec LLC. All Rights Reserved. 1/13

01 ‘ Executive Summary

Overview

Stader Labs engaged OtterSec to perform an assessment of the near—x contract. This assessment was
conducted between August 29th and September 9th, 2022.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, we worked closely with the team over to streamline patches
and confirm remediation.

We delivered final confirmation of the patches September 9th, 2022.

Key Findings
The following is a summary of the major findings in this audit.

+ 4findings total

© 2022 OtterSec LLC. All Rights Reserved. 2/13

02 ‘ Scope

The source code was delivered to us in a git repository at github.com/stader-labs/near-liquid-token. This
audit was performed against commit edbbdcb.

There was a total of 1 program included in this audit. A brief description of the program is as follows. A full
list of program files and hashes can be found in Appendix A.

Name Description

near-x Liquid staking protocol where staked NEAR is represented by NearX tokens.

© 2022 OtterSec LLC. All Rights Reserved. 3/13

03 ‘ Findings

Overall, we report 4 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will

help mitigate future vulnerabilities.

The below chart displays the findings by severity.

Severity Count

Critical
High

Medium
Low
Informational

© 2022 OtterSec LLC. All Rights Reserved. 4/13

04 ‘ General Findings

Here we present a discussion of general findings during our audit. While these findings do not present
an immediate security impact, they do represent antipatterns and could introduce a vulnerability in the

future.

ID

Description

OS-NLT-SUG-00

OS-NLT-SUG-01

OS-NLT-SUG-02

OS-NLT-SUG-03

Functions are marked as private when they should be internal.

NEP-330 Contract Source Metadata is implemented, but contract source is not pub-
licly available at the given URL.

The codebase implements a helper function which is already provided by NEAR’s
Rust SDK.

The contract rounds against the protocol when unstaking NEAR.

© 2022 OtterSec LLC. All Rights Reserved. 5/13

NEAR Liquid Token Audit 04 | General Findings

OS-NLT-SUG-00 | Internal Functions Marked Private

Description

Functions in NEAR can be public, private, or internal. A private function is exposed on the blockchain,
but attempts to call the private function will fail unless the caller is the contract itself; either through a
callback or using the contract’s account directly. Internal functions, on the other hand, cannot be directly
called at all; they only perform functionality internal to the contract.

The following functions were observed to be private:

+ get_validator_to_stake
+ get_validator_to_unstake
+ get_unstake_release_epoch

« epoch_reconcilation

However, these functions are not used for callbacks, and there is need to call them directly using the
contract’s account keys.

Remediation

Change these functions from private to internal.

© 2022 OtterSec LLC. All Rights Reserved. 6/13

NEAR Liquid Token Audit 04 | General Findings

OS-NLT-SUG-01 | Contract Source Metadata

Description

The purpose of ContractSourceMetadata, as per NEP-330, is to allow “auditing and viewing source code
for a deployed smart contract.” This NEP is generally suitable only for open-source contracts, as a way for
users to easily locate the source code for the deployed contract.

The contract implements ContractSourceMetadataTraitin contracts/near-x/src/con
tract/metadata. rs. When this data is queried using the NEAR CLI, as shown below, the contract pro-
vides the URL https://github.com/stader-labs/near-liquid-token and the cargo package version. However,
this is not a public repository, and accessing this URL results in an error 404.

S NEAR_ENV=mainnet near view nearx.stader-labs.near
<, contract_source_metadata
View call: nearx.stader-labs.near.contract_source_metadata()

{

version: '0.1.0',
link: 'https://github.com/stader-labs/near-1liquid-token'

Remediation

Do notimplement ContractSourceMetadata unless the contract is open-source and the repository
is available to the community. If this contract becomes open-source in the future, consider implementing
NEP-330 again.

© 2022 OtterSec LLC. All Rights Reserved. 7/13

© o N O O K

NEAR Liquid Token Audit 04 | General Findings

OS-NLT-SUG-02 | Redundant Helper Function

Description

Inoperator.rs,several callback functions use is_promise_success, a helper function which is
implemented in the codebase. However, this functionality is already provided by NEAR’s Rust SDK as
near_sdk: :is_promise_success. Note that thisis already used elsewhere in the codebase.

src/utils.rs RUST

is_promise_success() ->

require! (
env::promise_results_count() == 1,
ERROR_EXPECT_RESULT_ON_CALLBACK

)3

matches! (env::promise_result(0), PromiseResult::Successful(_))

The current behavior of the custom implementation seems to be consistent with the behavior of
near_sdk: :is_promise_success. However, it is recommended to use the NEAR Rust SDK’s imple-
mentation to benefit from any updates made to the functionality or efficiency of the function in future.

Remediation

Remove the custom implementation of is_promise_success, and use
near_sdk: :is_promise_success everywhere instead.

© 2022 OtterSec LLC. All Rights Reserved. 8/13

NEAR Liquid Token Audit 04 | General Findings

OS-NLT-SUG-03 | Rounding Direction in Stake/Unstake

Description

When a user stakes NEAR, the receive a proportionalamount of shares in return. This calculation is rounded

against the user, in that they may receive less than what is fair.

src/contract/internal.rs RUST

102

103
104 num_shares = self.num_shares_from_staked_amount_rounded_down (amount) ;
105 require! (num_shares > 0, ERROR_NON_POSITIVE_STAKE_SHARES) ;

When a user unstakes shares, they receive NEAR in return. However, in this case the calculation is rounded
against the protocol, in that the user may receive more than what is fair. Interestingly, the program later
rounds against the user while calculating their remaining amount.

src/contract/internal.rs RUST

145 receive_amount =
— self.staked_amount_from_num_shares_rounded_up(num_shares) ;
] require! (
147 receive_amount > 0,
148 ERROR_NON_POSITIVE_UNSTAKE_RECEVIE_AMOUNT
149)5

Itis worth noting that rounding errors are fairly inconsequential on NEAR, as the discrepancy (1 yoctoNEAR)
is negligible. Additionally, NEAR’s staking pool core contract rounds against the protocol in both stake
and unstake.

Remediation

The sound approach would be to always round against the user, in favor of the protocol. In this case, use the
staked_amount_from_num_shares_rounded_down method to calculate receive_amount.

If the goal is to be consistent with NEAR’s core contracts, consider rounding against the protocol in all
cases. Additionally, document this behavior and ensure there is a “cushion fund” to handle rounding
losses.

© 2022 OtterSec LLC. All Rights Reserved. 9/13

A ‘ Program Files

Below are the files in scope for this audit and their corresponding SHA256 hashes.

Cargo.toml
src
constants.rs
contract.rs
errors.rs
events.rs
fungible_token.rs
lib.rs
state.rs
utils.rs
contract
internal.rs
metadata.rs
operator.rs
public.rs
storage_spec.rs
upgrade.rs
util.rs
fungible_token
metadata.rs
nearx_internal.rs
nearx_token.rs
tests
unit_tests.rs
helpers
mod.rs

© 2022 OtterSec LLC. All Rights Reserved.

642152bc7831e6070d8a8130693538a89802efbe839fe3f806d794blde663adl

50¢c53929f3083c2d4felcda4ad0feb701db5¢c65398fd4654d13¢c2214e49cd9328
452c9b9433eb283e78f609c1f011d7a76c15cbcOb484e01dlcdbfbc1933a2fh8
8af8eb04547576aada86df080e23b85a9322d93b5656bad80e97e8df8266b25fF
56ef0627a79d9bfac632fbOce56ae286a2cf2427df8f2c37388d6acec9de6116
e76e68cd007a050ffb6ef7cec3441405264775f2a0e04ebcf6e79cas565661e7f
4d2921421b084175652bf948a24fb138c43132c1b3f63953138d11ab5dad83ee
2e4bc931008b81137468575efb569d94b39092ba457da94436c1d77e09edd4cd
c97a01d029759486062e693aae0b11e91c5387d8c522258dc7bcd96d525dfb67

5f30549619aab6b1567c5fef5e6d426d2f8cf13ac3783afc20e8baaas30ce3cO
0dd01lb05bdacadaafab6f4c4cldc3abf67cd420ebOb4f1ib8e2dd05ad46c636¢2
cc9cla72ach54389bdadc9a35315f54cc9b393775790deaab018ead3a809e381
d5c829b1dad4fdef92d77062894efc9ala2ea509acl16d4d92862d5a241bf756el
4bf8c2ebfacdal6979f4ch36beb21e7b23e6a457d8d8195e178dc24a604682d8
92e925313f842f1a407b88dc418871365b353e8db0d7508f019fb770624c3d84
b7337f4a7e3fe32329909cac3a45667741664197fbe63c593a3f97cc36939b89

051800e4ad991961b85e2f741062516456dd61d02deealbefabled92e3c886f1
441dbf9e2799d493a0bddafabe7663aa019a21f44f1a59269c8719afae2e83e4
7bcel95f5c1997b207622dfd13c2fb0f09ed41296c2ab74f5091474bbbba9399

c4728ead3021c5337ea24al2076a553a2650e465ea3b4e592a531c492662d2fd

a447ff7753c5658e79d3af169f08adc003dfof10f81bdf6d233cch25e82bde8b

10/13

B ‘ Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an onchain program. In other words, there is no way to steal tokens or deny service. An
example of a design vulnerability would be an onchain oracle which could be manipulated by flash loans
or large deposits.

On the other hand, auditing the implementation of the program requires a deep understanding of NEAR’s
execution model. For a non-exhaustive list of security issues we check for, see Appendix C.

Implementation vulnerabilities tend to be more “checklist” style. In contrast, design vulnerabilities require
a strong understanding of the underlying system and the various interactions: both with the user and
cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first.
In our audits, we always approach any target in a team of two. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2022 OtterSec LLC. All Rights Reserved. 11/13

C | Implementation Security Checklist

Unsafe arithmetic

Integer underflows or Unconstrained input sizes could lead to integer over or underflows, causing
overflows potentially unexpected behavior. Ensure that for unchecked arithmetic, all
integers are properly bounded.

Rounding Rounding should always be done against the user to avoid potentially ex-
ploitable off-by-one vulnerabilities.

Conversions Rust as conversions can cause truncation if the source value does not fit into
the destination type. While this is not undefined behavior, such truncation
could still lead to unexpected behavior by the program.

Input validation

Timestamps Timestamp inputs should be properly validated against the current clock
time. Timestamps which are meant to be in the future should be explicitly
validated so.

Numbers Sane limits should be put on numerical input data to mitigate the risk of

unexpected over and underflows. Input data should be constrained to the
smallest size type possible, and upcasted for unchecked arithmetic.

Strings Strings should have sane size restrictions to prevent denial of service condi-
tions
Miscellaneous
Libraries Out of date libraries should not include any publicly disclosed vulnerabilities
Clippy cargo clippy is an effective linter to detect potential anti-patterns.

© 2022 OtterSec LLC. All Rights Reserved. 12/13

D | Vulnerability Rating Scale

Werated our findings according to the following scale. Vulnerabilities have immediate security implications.
Informational findings can be found in the General Findings section.

Critical

High

Low

Informational

Vulnerabilities which immediately lead to loss of user funds with minimal precondi-
tions

Examples:

+ Misconfigured authority/token account validation
+ Rounding errors on token transfers

Vulnerabilities which could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

+ Loss of funds requiring specific victim interactions
« Exploitation involving high capital requirement with respect to payout

Vulnerabilities which could lead to denial of service scenarios or degraded usability.
Examples:

« Malicious input cause computation limit exhaustion
« Forced exceptions preventing normal use

Low probability vulnerabilities which could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

+ Oracle manipulation with large capital requirements and multiple transactions

Best practices to mitigate future security risks. These are classified as general findings.
Examples:

+ Explicit assertion of critical internal invariants
+ Improved input validation
+ Uncaught Rust errors (vector out of bounds indexing)

© 2022 OtterSec LLC. All Rights Reserved. 13/13

